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On hydromagnetic waves in a stratified rotating 
incompressible fluid 
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The dispersion relationship for plane hydromagnetic waves in a stratified 
rotating fluid (a) indicates that the well-known analogy between rotating fluids 
and stratified fluids in regard to their hydrodynamic behaviour does not extend 
to magnetohydrodynamic behaviour, and (b )  lends credence to a certain con- 
jecture made in a previous paper, namely that effects due to density stratifica- 
tion can be neglected when considering the dispersion relationship for free 
hydromagnetic oscillations of the Earth’s core if the Brunt-Viiisalii frequency 
is much less than twice the angular speed of the Earth’s rotation. 

1. Introduction 
In  a previous paper (Hide 1966) an approximate dispersion relationship 

for free hydromagnetic oscillations of the fluid core of the Earth was proposed, 
and it was conjectured that when 

p i 2  4 415112 (1.1) 

effects due to vertical gradients of density, p, can safely be ignored. Here S2 is 
the angular velocity of the Earth’s rotation and 

IN\ is the Brunt-Vaisala frequency (effects due to compressibility being 
negligible in the theoretical model) and g = (0, 0, g )  is the acceleration due to 
gravity and centrifugal effects. The purpose of the present note is to investigate 
the validity of the criterion expressed by equation (1.1). 

The most acceptable procedure would be to find an accurate dispersion 
relationship for the case N 0, but this has not yet proved feasible. Owing to 
the (nearly) spherical geometry of the system, even when N = 0 the problem is 
mathematically intractable (see Hide 1966; Malkus 1967; Stewartson 1967; 
Suffolk & Allan 1969), except in certain very special cases. For this reason we 
shall examine an elementary but related problem whose solution should indicate, 
in part at  least, how effects due to rotation, density stratification and magnetic 
fields interact with one another. Thus, we shall consider plane, small amplitude, 
harmonic waves propagating in an inviscid, perfectly conducting, incompressible, 
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rotating fluid of indefinite extent in all directions when both N (based on the un- 
disturbed density field p = po(z) ) and 

v = Bo/J(PPo), P.3 )  

the Alfvhn velocity, are uniform, where B, is the undisturbed magnetic field 
vector and ,u is the magnetic permeability. 

2. Equations of the problem 
The equations of the problem referred to a frame which rotates with steady 

angular velocity GI relative to an inertial frame are, when all transport pro- 
cesses (viscosity, electrical resistivity, thermal conduction, etc.) are negligible, 
the following : 

(2.1) 
1 j x B  au 

- + ( u . V ) u + 2 Q x u  = ---vp+-+g, 
at P P 

v.u = 0, 

% + ( u . V ) p  at = 0, 

V.B = 0, 

V x B  =pj, 

v x E = - aBpt, 

E + u x B = O .  (2.7) 

Here u denotes the Eulerian flow velocity, p pressure, j current density, E 
electric field, and t time. Equations (2.1)-(2.3) express conservation of momen- 
tum, matter and density of individual fluid elements, respectively; equations 
(2.4)-(2.6) are the laws of Gauss, Amphre and Faraday, respectively; equation 
(2.7) states that in a perfect conductor of electricity, the electric field acting on a 
moving element must vanish because otherwise, by Ohm’s law, electric currents 
of infinite strength would be implied. 

If we write 

(2.8) } 
P = p,M + P&, Y, 2 ,  t ) ,  u = uo + U,(X, y, z , t ) ,  

P = po(2) +P,(”, Y, 2 ,  t ) ,  €3 = B, + Blk, y, 2, t ) ,  

where u,, = 0 and Vpo = gp,, and we assume that 1p,1 < [pol ,  IB,( < lBol 
lpll < po  and spatial variations in po are small in comparison with po, then to 
first order of small quantitiesp,, B,, p1 and u1 = (a,, w,, w,) equations (2.1)-(2.4) 

+ g e  
1 (V X B,) X BO 

become : 
aU’+2nxu,=-,vp1+-- 
at Po lug, Po 

(2.9) 

(where Po is the mean density of the fluid), 

v.u, = 0, (2.10) 

(2.11) 

V . B ,  = 0 (2.12) 
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-equation (2.5) having been used to eliminate j from (2.1)-and the equation 
that results when E is eliminated between (2.6) and (2.7) becomes: 

-- aB1 (B,.V)u, = 0. 
at 

Eliminate pl,  B, and p1 between (2.9)-(2.13) and show that: 

a2  8U [%- (V.V)'] V x ul- s(S2.V) 2- N x V(N.u) = 0 
at 

(2.13) 

(2.14) 

(cf. (1.2) and (1.3)). 
Substitute a plane wave solution, 

u ccexp{i(wt-K.r)) (2.15) 

(where w is the angular frequency, K = (k, 1, m) is the wave-number vector and 
r = (z, y, z ) ) ,  in (2.10) and (2.14) and thus find, after a little manipulation, the 
dispersion relationship : 

w2 = (V.K)2 

X K)2 + (2Q .K)2 + 4(v.K)2(2fi .K)2]*) - +-( 2 K2 - i[(" K2 K2 1 -  
(2.16) 

The phase velocity, WK/K2, and group velocity, (awlak, awlal, awlam), follow 
directly from (2.16). When N 2  = p;lgdp,/dz > 0, w is always real; we restrict 
attention in what follows to this case of stable density stratification. (In the 
other case, dp,/dz < 0, the density stratification is unstable, as evinced by the 
result that w may then take complex values with negative imaginary parts.) 

Particle displacements are transverse with respect to the wave fronts, i.e. 
ul.K = 0, the occurrence of non-zero values of u l . K  being incompatible with 
the assumption of incompressibility (see equation (2.10) ). Details of the shapes 
of particle orbits (linear, circular or elliptical) and of concomitant disturbances 
of the magnetic field and of the fields of density and vorticity, are readily derived 
from (2.9)-( 2.16). 

1 ( N x K ) ~ + ( ~ S Z . K ) ~  

3. Discussion 

when V = N = 0 we have 'inertial waves', for which 
In  three limiting cases, (2.16) reduces to particularly simple forms. Thus, 

w2 = (2SZ. K)2/K2 (3.1) 

(cf. Greenspan 1968), and in which rotation provides the restoring forces; when 
V = SZ = 0 we have 'internal waves', for which 

(3.2) W 2  = (N X K)'/K2 

(cf. Yih 1965), and in which buoyancy effects provide the restoring forces; 
and when S2 = N = 0 we have 'hydromagnetic (magnetohydrodynamic or 
AlfvBn) waves', for which 

W2 = (v .K)2 (3.3) 
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(cf. Alfv6n & Fiilthammar 1963, or Roberts 1967), and in which the magnetic 
field provides the restoring forces. Inertial waves and internal waves are highly 
dispersive, having group velocities that depend on K.  Alfv6n waves, however, 
are non-dispersive; they propagate with group velocity equal to V, which is 
independent of K. 

It has occurred to a number of workers (see Greenspan 1968) that in some res- 
pects rotating fluids and stratified fluids exhibit analogous hydrodynamic 
behaviour (cf. equations (3.1) and (3.2), especially when I = 0 a n d 8  = (a, 0, 0 ) ) ,  
but (2.16) shows that the analogy does not extend to magnetohydrodynamic 
behaviour. Thus, when S2 = 0 

(the negative sign corresponding to modes for which particle displacements are 
horizontal and therefore only the magnetic field provides the restoring force), 
whereas when N = 0 

(cf. Lehnert 1954; Hide 1955; Chandrasekhar 1961; Lighthill 1967). The im- 
portant difference between the last two equations is the presence in the latter 
of a term containing the (square of the) ratio of V . K to ( 2 8 .  K)/K, which has no 
counterpart in the former. (When V = 0, w2 = (4 f i){ (N x K ) ~ +  (2S2 .K )~} /K~ . )  

This ‘ratio term’, which arises because Coriolis forces act a t  right angles to u1 
and thus prevent the occurrence of ‘decoupled’ modes, is of great physical 
importance, especially when ~ ( V . K ) ~  < (2S2 . K ) ~ / K ~  (cf. equations (3.1) and 
(3.3)).  The roots of equation (3.5) are then 

the latter being the dispersion relationship for a hybrid type of wave (see Lehnert 
1954; Chandrasekhar 1961; Hide 1966), which has no direct analogue in a 
stratified fluid. 

In  conclusion, observe that when 1 N x K/ < 12P . K I (3.5) is a very good approxi- 
mation to (2.16), indicating that the conjecture expressed by (1.1) is probably 
valid, at least for oscillations with wavelengths that are much smaller than the 
radius of the Earth’s core. 

Thanks are due to the Director-General of the Meteorological Office for 
permission to publish this paper. 
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